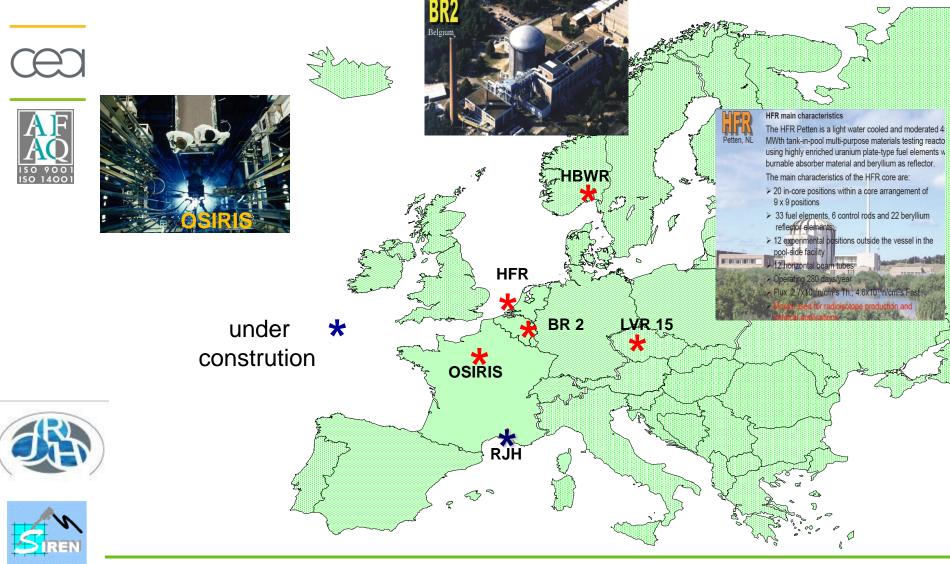

Sustaining Material Testing Capacity in France: From OSIRIS to JHR

to support industry and public organizations in R&D irradiation programs on nuclear fuel and materials

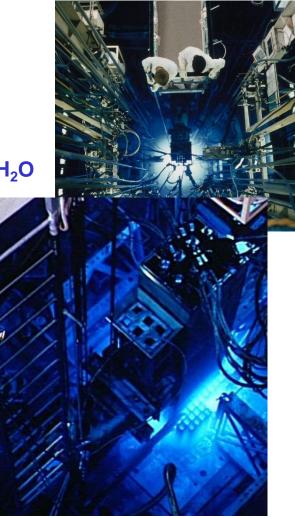


Stéphanie MARTIN, French Alternative Energies and Atomic Energy Commission (CEA Saclay, France) Gilles BIGNAN, CEA Cadarache, France

DEN-DRSN International Conference On Research Reactors: Safe Management and Effective Utilization – 1 Rabat, Nov. 14-18, 2011

Context: An ageing fleet of MTR in Europe

Necessity to at least one new MTR in Europe (ESFRI, SNE-TP...


DEN-DRSN International Conference On Research Reactors: Safe Management and Effective Utilization – 2 Rabat, Nov. 14-18, 2011

The OSIRIS reactor

- Main characteristics of OSIRIS research reactor : •
 - Open core pool type
 - **Compact core : 57*57*60 cm³**
 - Fuel
 - 38 standard elements
 - 6 control elements with Hafnium as absorber
 - U3Si2AI plates (enriched to 19.75 %) •
 - Moderator, coolant & biological protection : H₂O
 - Thermal power : 70 MW _
 - Maximum neutron flux
 - fast (E>1 MeV) : 2.5 E14 n/cm²/s
 - thermal : 2.5 E14 n/cm²/s ٠

The main goal of OSIRIS reactor is to carry out irradiation tests of fuel and structural materials of nuclear power plants, and to produce radioisotopes

DEN-DRSN

International Conference On Research Reactors: Safe Management and Effective Utilization – 3 Rabat, Nov. 14-18, 2011

The current status of OSIRIS

- Annual operation :
 - 180 operating days (8 cycles)
 - Intercycles of around 10 days
 - Two specific maintenance periods in spring and summer
- Operation extended up to middle of this decade
 - Specific up grades required by the Safety Authority performed in 2009-2010
 - Truck hatch
 - Polar Cranes
 - Control rod room (-15 m)
 - Ventilation system

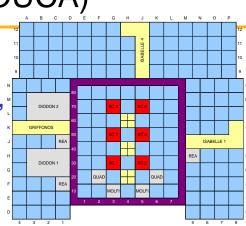
DEN-DRSN

Material irradiation devices (OSIRIS CHOUCA)

• Goals:

- Material irradiations (grids, fuel clad, pressure tubes, vessel, guide tubes, …)
- Parametric studies, qualification, thermal mechanic behavior
- Various reactors :
 - Gen 2, 3 and 3+ (Steel, Zircaloy, ...)
 - Gen 4 (SiC, ODS...)
 - MTR (Aluminum alloys)
- Main characteristics
 - Irradiated in core or in periphery of core
 - Temperature :
 - from 250 to 400 °C (+/-15°C) NaK
 - Up to 1100°C gas

- 6 independent electrical heating elements to
 - automatically adjust the temperature


Instrumentation

Thermocouples

- Dosimeters of Fe, Cu and AlCo types
 - In situ dimensional measurements

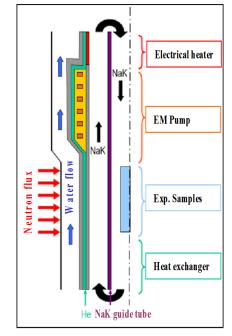
Main characteristics

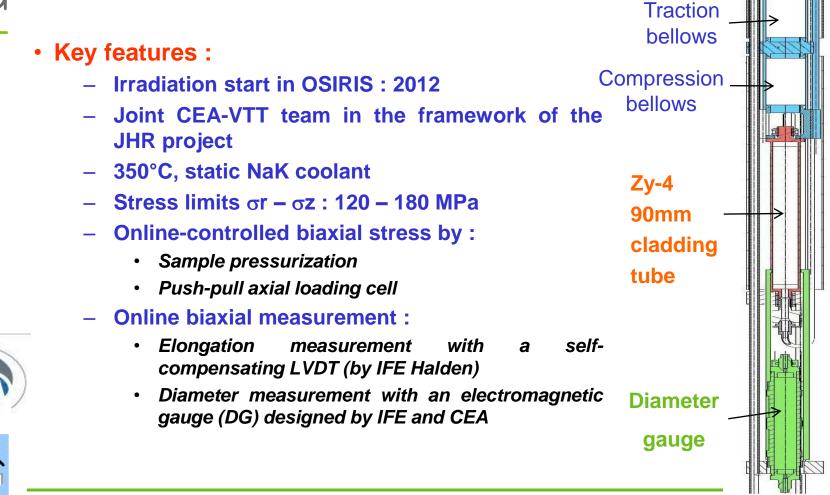
- MICA: same as CHOUCA
- CALIPSO: 250°C to 450°C

integrated electromagnetic pump to circulate the NaK medium (to improve heat removal from sample materials surfaces => better temperature control).

Know-how transfer :

- take into account the OSIRIS feed-back for the design of JHR devices (to reduce thermal gradients on samples, to simplify hot lab operations, ...)
- develop more innovative sample holders (highly instrumented) and test some parts in OSIRIS : ex MELODIE




Diagram of the CALIPSO loop

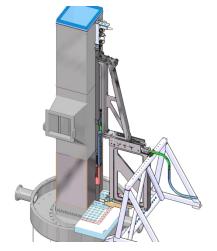
Preparing JHR with OSIRIS: the MELODIE experiment

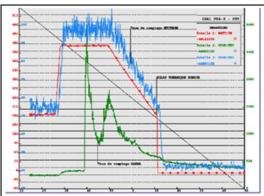
• **Goal :** to assess the interest of a biaxial stresses, online-controlled concept for the creep study of fuel cladding

LVDT

DEN-DRSN International Conference On Research Reactors: Safe Management and Effective Utilization – 7 Rabat, Nov. 14-18, 2011

Fuel irradiation device (OSIRIS ISABELLE1 loop)


Goals: •

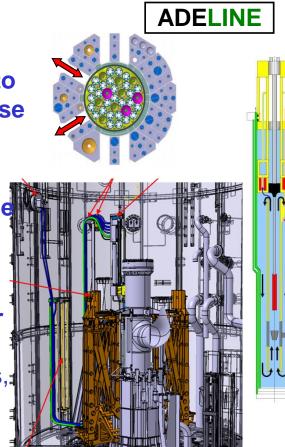

- test new fuel rods (with new clad material, new pellet size, or new type of fuel) until clad failure to determine technological limit
- by realizing power ramps representative of class 2 incidental transients
- Main characteristics •
 - periphery pressurized loop with PWR or BWR conditions
 - UO2, MOX, high burn-up fuels
 - moving device perpendicularly to OSIRIS core, slaved to neutron flux (SPND) to guarantee the speed, and stopped according to thermal power to guarantee the target
 - very good accuracy of the target's linear heat rate
 - clad failure monitoring : gamma detector, delayed neutron detector, and on-line gamma spectrometry

expansion of the rod monitored by LVDT elongation sensor.

DEN-DRSN

International Conference On Research Reactors: Safe Management and Effective Utilization - 8 Rabat, Nov. 14-18, 2011

Main characteristics


 sample holder (which contains possibly instrumented fuel: fuel centerline thermocouple and back-pressure sensor to analyze fission products and helium release kinetics -> used

in OSIRIS GRIFFONOS loop)

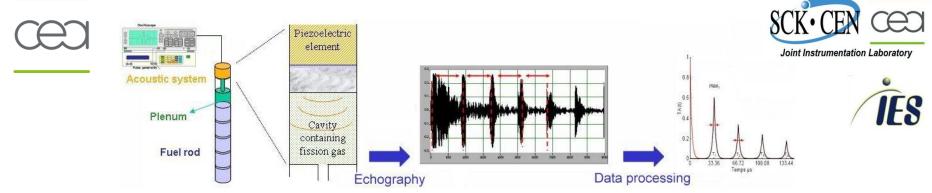
instrumentation holder (which contains the thermocouples for thermal balance)

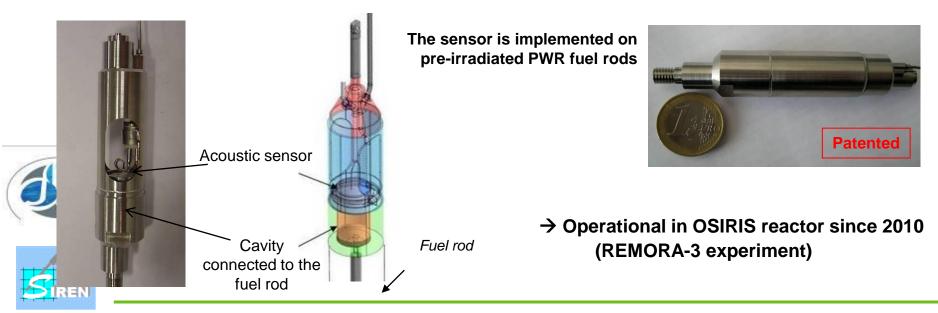
Know-how transfer :

 take into account the OSIRIS feed-back for design of JHR loop (easy device handling, minimizing thermal leaks and pressure losses, reducing time of cladding failure detection so improving the loop operation, ...)

DEN-DRSN International Conference On Research Reactors: Safe Management and Effective Utilization – 9 Rabat, Nov. 14-18, 2011

CEA Strategy for future Irradiation Capacity: Improve on-line analysis for JHR → R&D and Innovation on Instrumentation : Recent developments



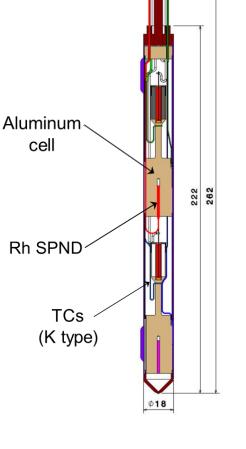

DEN-DRSN

Examples of CEA's recent developments in reactor instrumentation

Fission Gas Release determination using acoustic measurement

Online measurement of the molar mass of the gas inside the fuel rod (\rightarrow fraction of released fission gas)

DEN-DRSN


Collaboration on photonic and neutronic measurements devices

- CALMOS in OSIRIS: new calorimetric probe (in-core measurements, <u>mobile</u> system) 2011
- continuous axial distribution of total heating
- measurements inside and above the core
- calorimetric probe remaining in the irradiation field only for measurements (limiting the ageing)
- simultaneously thermal flux measurement (Rhodium SPND)
- CARMEN2 in JHR: to characterize experimental locations with photonic & neutronic measurements
- CARMEN1: 2 mock-ups tested in OSIRIS in 2012

One with CALMOS mobile probe concept + gamma thermometer (gamma heating measurement)

One with fission chambers and Rhodium SPND (fast/thermal neutron flux measurement)

=> to select the most appropriate detectors

DEN-DRSN International Conference On Research Reactors: Safe Management and Effective Utilization –12 Rabat, Nov. 14-18, 2011

THANK YOU FOR YOUR ATTENTION.... Stephanie.martin@cea.fr

